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Abstract

The diversification quotient (DQ) is recently introduced for quantifying the degree of di-

versification of a stochastic portfolio model. It has an axiomatic foundation and can be defined

through a parametric class of risk measures. Since the Value-at-Risk (VaR) and the Expected

Shortfall (ES) are the most prominent risk measures widely used in both banking and in-

surance, we investigate DQ constructed from VaR and ES in this paper. In particular, for

the popular models of elliptical and multivariate regular varying (MRV) distributions, explicit

formulas are available. The portfolio optimization problems for the elliptical and MRV models

are also studied. Our results further reveal favourable features of DQ, both theoretically and

practically, compared to traditional diversification indices based on a single risk measure.

Keywords: Value-at-Risk, Expected Shortfall, diversification quotient, elliptical models,

regular varying models

JET: C44, G11

1 Introduction

In order to mitigate risks in portfolios of financial investment quantitatively, a common ap-

proach is to compute a quantitative index of the portfolio model, based on e.g., the volatility,

variance, an expected utility or a risk measure, following the seminal idea of Markowitz (1952) on

portfolio diversification. In the literature, one of the most prominent examples of the diversification

index based on a general risk measure is defined by Tasche (2007) which is referred as diversification

ratio (DR). Choueifaty and Coignard (2008) investigated the theoretical and empirical properties

of DR in portfolio construction and compared the behavior of the resulting portfolio to common,

simple strategies. See Embrechts et al. (2015) and Koumou and Dionne (2022) for theories of DR
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and other diversification indices. Bürgi et al. (2008) defined a closely related notion of DR which

is called the diversification gain and explored various methods of modeling dependence and their

influence on diversification gain.

Different from the traditional diversification indices such as DR in the above literature, Han

et al. (2022) proposed six axioms – non-negativity, location invariance, scale invariance, rationality,

normalization and continuity – which jointly characterize a new diversification index, called the

diversification quotient (DQ), whose definition is based on a class of risk measures decreasing in

an index α. All commonly used risk measures belong to a monotonic parametric family, and this

includes VaR, ES, expectiles, mean-variance, and entropic risk measures. They argued that DQ

has many appealing features both theoretically and practically, while these properties, in particular

the six axioms above, are not shared by DR based on VaR, ES, or any other commonly used risk

measure. Moreover, portfolio optimization of DQs based on VaR and ES can be computed very

efficiently, and thus DQ can be easily applied to real data.

Most properties of DQ are studied by Han et al. (2022) for a general class of risk measures.

In this paper, we focus on specific risk measures, in particular, the Value-at-Risk (VaR) and the

Expected Shortfall (ES). Even though VaR has been criticized because of its lack of subadditivity

and ES requires the loss to have a finite mean, VaR and ES are still the two most common classes of

risk measures in practice, widely employed in global banking and insurance regulatory frameworks;

see Basel III/IV (BCBS (2019)) and Solvency II (EIOPA (2011)). More theoretical properties and

discussions of VaR and ES can be found in, e.g., Artzner et al. (1999), Embrechts et al. (2014, 2018),

Emmer et al. (2015) and the references therein. We pay particular attention to two popular models

in finance and insurance, namely, elliptical and multivariate regular variation (MRV) distributions.

Elliptical distributions, including normal and t-distributions as special cases, are the most standard

tools for quantitative risk management (McNeil et al. (2015)). They have been studied for DR with

convenient properties; see Cui et al. (2022) and the references therein. The MRV model is widely

used in Extreme Value Theory for investigating the portfolio diversification; see, e.g., Mainik and

Rüschendorf (2010), Mainik and Embrechts (2013) and Bignozzi et al. (2016).

This paper is an extension of Han et al. (2022) in which an axiomatic framework of diver-

sification indices is proposed and general properties of DQ are studied. As a new concept of

diversification index, studying properties such as explicit formulas and limiting behavior of DQ

under specific risk measures and special risk models will help us to better understand and use DQ

in risk management applications. In addition, the advantages of DQ and the connection between

DQ and DR are clearer under the elliptical and MRV models, revealing many attractive features

of choosing DQ instead of DR to quantify diversification risk, especially for tail heaviness and

common shocks.
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The paper is organized as follows. In Section 2, the definition of DQ and some preliminaries

on risk measures are collected. In Section 3, we study general properties for DQs based on VaR

and ES. Since DQs based on VaR and ES have natural ranges of [0, n] and [0, 1], respectively, some

special dependence structures of the portfolio that correspond to the special values of 0, 1, and

n are constructed with clear interpretation for values in between (Theorem 1). In Section 4, we

focus on DQ for large portfolios. By the Law of Large Numbers, we show that DQs based VaR and

ES for a portfolio with independent components tend to 0 as the number of assets in the portfolio

increases to infinity (Theorem 2). The limits for DQs based on VaR and ES for portfolios with

exchangeable components do not necessarily tend to 0. We show that the upper bound for the

limit decreases in the bivariate correlation coefficient. (Proposition 1). In Section 5, DQ is applied

to elliptical models; explicit formulas and the limiting behavior of DQs based on VaR and ES are

available (Proposition 2 and Theorem 3). Moreover, we present several numerical results for the

two most important elliptical distributions used in finance and insurance, namely the multivariate

normal distribution and the multivariate t-distribution, and show that DQ can properly capture

tail heaviness. As a popular tool for modeling heavy-tailed phenomena, MRV models for DQ are

studied in Section 6. Furthermore, we generalize the results to the optimal portfolio selection

problem in Section 7. Under elliptical models, the optimization problem can boil down to a well-

studied problem (see e.g., Choueifaty and Coignard (2008)) and a limiting result in MRV models

is also derived (Theorem 4 and Proposition 5). We conclude the paper in Section 8.

2 Diversification quotients

Throughout this paper, (Ω,F ,P) is an atomless probability. The atomless assumption in our

context is very weak and it is widely used in statistics and risk management; see Delbaen (2002)

and Section A.3 of Föllmer and Schied (2016) for details of atomless probability spaces. Almost

surely equal random variables are treated as identical. A risk measure ϕ is a mapping from X

to R, where X is a convex cone of random variables on (Ω,F ,P) representing losses faced by a

financial institution or an investor, and X is assumed to include all constants (i.e., degenerate

random variables). For p ∈ (0,∞), denote by Lp = Lp(Ω,F ,P) the set of all random variables

X with E[|X|p] < ∞ where E is the expectation under P. Furthermore, L∞ = L∞(Ω,F ,P) is

the space of all essentially bounded random variables, and L0 = L0(Ω,F ,P) is the space of all

random variables. Write X ∼ F if the random variable X has the distribution function F under

P, and X
d
= Y if two random variables X and Y have the same distribution. We always write

X = (X1, . . . , Xn) and 0 for the n-vector of zeros. Further, denote by [n] = {1, . . . , n}, R+ = [0,∞)

and R = [−∞,∞]. Terms such as increasing or decreasing functions are in the non-strict sense.
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For X ∈ X , ess-sup(X) and ess-inf(X) are the essential supremum and the essential infimum of

X, respectively.

A diversification index D is a mapping from Xn to R, which is used to quantify the magnitude

of diversification of a risk vector X ∈ Xn representing portfolio losses. Our convention is that a

smaller value of D(X) represents a stronger diversification. Measuring diversification is closely

related to risk measures. Some standard properties of a risk measure ϕ : X → R are collected

below.

[M] Monotonicity: ϕ(X) ⩽ ϕ(Y ) for all X,Y ∈ X with X ⩽ Y .

[CA] Constant additivity: ϕ(X + c) = ϕ(X) + c for all c ∈ R and X ∈ X .

[PH] Positive homogeneity: ϕ(λX) = λϕ(X) for all λ ∈ (0,∞) and X ∈ X .

[SA] Subadditivity: ϕ(X + Y ) ⩽ ϕ(X) + ϕ(Y ) for all X,Y ∈ X .

The two popular classes of risk measures in banking and insurance practice are VaR and ES.

The VaR at level α ∈ [0, 1) is defined as

VaRα(X) = inf{x ∈ R : P(X ⩽ x) ⩾ 1− α}, X ∈ L0,

and the ES (also called CVaR, TVaR or AVaR) at level α ∈ (0, 1) is defined as

ESα(X) =
1

α

∫ α

0

VaRβ(X)dβ, X ∈ L1,

and ES0(X) = ess-sup(X) = VaR0(X) which may be ∞. The probability level α above is typically

very small, e.g., 0.01 or 0.025 in BCBS (2019); note that we use the “small α” convention as in Han

et al. (2022). Both VaR and ES satisfy the properties [M], [CA] and [PH], while ES also satisfies

the property [SA].

To measure diversification quantitatively, a new index, called diversification quotient (DQ),

is introduced as follows.

Definition 1 (Han et al. (2022)). Let ρ = (ρα)α∈I be a class of risk measures indexed by α ∈ I =

(0, ᾱ) with ᾱ ∈ (0,∞] such that ρα is decreasing in α. For X ∈ Xn, the diversification quotient

based on the class ρ at level α ∈ I is defined by

DQρ
α(X) =

α∗

α
, where α∗ = inf

{
β ∈ I : ρβ

(
n∑

i=1

Xi

)
⩽

n∑
i=1

ρα (Xi)

}

with the convention inf(∅) = ᾱ.

Remark 1. The value of DQρ
α depends on how the class ρ = (ρα)α∈I is parametrized. For in-

stance, one could, hypothetically, use a different parametrization VaR′
α = VaRα2 for the class
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VaR, although there is no real reason to do so. The value of DQVaR′

α is generally different

from DQVaR
α2 , but they generate the same order; that is, DQVaR′

α (X) ⩽ DQVaR′

α (Y) if and only

if DQVaR
α2 (X) ⩽ DQVaR

α2 (Y), which can be checked by definition. Therefore, different parametriza-

tions do not affect the application of DQ in portfolio optimization.

Han et al. (2022, Theorem 1) characterized a subclass of DQ via six axioms: non-negativity, lo-

cation invariance, scale invariance, rationality, normalization and continuity; such DQs are defined

on the class of risk measures satisfying [M], [CA] and [PH]. DQ is defined based on a monotonic

parametric class of risk measures. All commonly used risk measures belong to a monotonic para-

metric family; for instance, this includes VaR, ES, expectiles, mean-variance, and entropic risk

measures; see Föllmer and Schied (2016) for a general treatment of risk measures.

In finance and insurance, the risk measures VaR and ES play prominent roles, as they are

specified in regulatory documents such as BCBS (2019) and EIOPA (2011). We will focus on VaR

or ES as the risk measures assessing diversification by DQ in this paper. In particular, both VaR

and ES satisfy the properties [M], [CA] and [PH], and hence DQVaR
α and DQES

α satisfy the six

above axioms.

Another popular diversification index is the diversification ratio (see e.g., Tasche (2007) and

Embrechts et al. (2015)), defined as

DRϕ(X) =
ϕ (
∑n

i=1Xi)∑n
i=1 ϕ(Xi)

, (1)

where ϕ is a suitably chosen risk measure, such as VaRα, ESα, variance (var), or standard deviation

(SD). Although DR generally does not satisfy some of the six axioms, we will compare DQ and

DR in several parts of the paper.

3 DQ based on VaR and ES

In this section, we will focus on the theoretical properties of DQVaR
α and DQES

α . For VaR and

ES, the interval in Definition 1 has a natural range of I = (0, 1). Similarly to Han et al. (2022), we

let Xn be (L0)n when we discuss DQVaR
α and (L1)n when we discuss DQES

α . To compute DQES
α , we

first define the superquantile transform (Liu et al. (2021, Example 4)). The term “superquantile”

is an alternative name for ES; see Rockafellar et al. (2014).

Definition 2. The superquantile transform of a distribution F with finite mean is a distribution

F̃ with quantile function p 7→ ES1−p(X) for p ∈ (0, 1), where X ∼ F .

The following alternative formulas for DQs based on VaR and ES will be useful later. They

are shown in Theorem 3 of Han et al. (2022). For a given α ∈ (0, 1), DQVaR
α and DQES

α can be
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computed by

DQVaR
α (X) =

1− F (
∑n

i=1 VaRα(Xi))

α
and DQES

α (X) =
1− F̃ (

∑n
i=1 ESα(Xi))

α
, (2)

where F is the distribution of
∑n

i=1Xi and F̃ is the superquantile transform of F .

Remark 2. Let S =
∑n

i=1Xi. If S has a continuous and strictly monotone quantile function, then

(2) can be rewritten as

DQVaR
α (X) =

1

α
P

(
S >

n∑
i=1

VaRα(Xi)

)
, X ∈ Xn,

and

DQES
α (X) =

1

α
Q

(
S >

n∑
i=1

ESα(Xi)

)
, X ∈ Xn,

for some probability measure Q. To give a formula for Q, let F be the distribution of S, and

α0 = 1− F (E[S]). There exists an increasing and continuous function g : (0, 1) → [0, 1] such that

ESg(α)(S) = VaRα(S) for all α ∈ (0, α0) and g(α) = 1 for α ∈ [α0, 1). We can express Q by

dQ/dP = g′(1− F (S)).

Remark 3. DQ based on ES admits another convenient formula in Han et al. (2022, Theorem 3).

If P(
∑n

i=1Xi >
∑n

i=1 ESα(Xi)) > 0, then

DQES
α (X) =

1

α
min

r∈(0,∞)
E

[(
r

n∑
i=1

(Xi − ESα(Xi)) + 1

)
+

]
, (3)

and otherwise DQES
α (X) = 0. The main advantage of this formula of DQES

α is computation and

optimization. In particular, this formula allows us to write the portfolio optimization problem of

DQES
α as a convex program; this is shown in Proposition 5 of Han et al. (2022).

Next, we see that if α ∈ (0, 1/n), there are three special values of DQVaR
α , which are 0, 1 and

n, corresponding to different representative dependence structures. The last value of n is based on

a useful inequality

VaRnα

(
n∑

i=1

Xi

)
⩽

n∑
i=1

VaRα(Xi) (4)

from Corollary 1 of Embrechts et al. (2018), and its sharpness is stated in Corollary 2 therein. For

DQES
α , there are two special numbers, 0 and 1, because ES is a class of subadditive risk measures.

As a natural question, we wonder for what types of dependence structures these special values are

attained. Next, we address this question.

We first present the concept of risk concentration in Wang and Zitikis (2021) which will be

useful to understand the dependence structures corresponding to special values of DQVaR
α and

DQES
α .
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Definition 3 (Tail event and α-concentrated). Let X be a random variable and α ∈ (0, 1).

(i) A tail event of X is an event A ∈ F with 0 < P(A) < 1 such that X(ω) ⩾ X(ω′) holds for

a.s. all ω ∈ A and ω′ ∈ Ac, where Ac stands for the complement of A.

(ii) A random vector (X1, . . . , Xn) is α-concentrated if its component share a common tail event

of probability α.1

Theorem 4 of Wang and Zitikis (2021) gives that a random vector (X1, . . . , Xn) is α-concentrated

for all α ∈ (0, 1) if and only if it is comonotonic, and hence the dependence notion of α-concentration

is weaker than comonotonicity. A random vector (X1, . . . , Xn) is comonotonic if there exists a ran-

dom variable Z and increasing functions f1, . . . , fn on R such that Xi = fi(Z) a.s. for every i ∈ [n].

We first address the case that DQVaR
α (X) = n, which involves the dependence concepts of

both risk concentration and mutual exclusivity (see Dhaene et al. (1999)). Thus, to arrive at the

maximum value of DQVaR
α (X) = n, one requires a dependence structure that is a combination of

positive and negative dependence. This phenomenon is common in problems in VaR aggregation;

see Puccetti and Wang (2015) for extremal dependence concepts. For this purpose, we propose

the α-concentration-exclusion (α-CE) model for α ∈ (0, 1/n), which is a random vector X ∈ Xn

satisfying four conditions:

(i) P (Xi > VaRα(Xi)) = α;

(ii) P(Xi ⩾ VaRα(Xi)) ⩾ nα;

(iii) {Xi > VaRα(Xi)}, i ∈ [n], are mutually exclusive;

(iv) (X1, . . . , Xn) are (nα)-concentrated.

For a class ρ of risk measures ρα decreasing in α, we say that ρ is non-flat from the left at (α,X) if

ρβ(X) > ρα(X) for all β ∈ (0, α), and ρ is left continuous at (α,X) if α 7→ ρα(X) is left continuous.

Remark 4. For any givenX ∈ L0, if VaR is non-flat from the left at (nα,X), then there exists α-CE

random vector X ∈ Xn such that
∑n

i=1Xi = X. For instance, let A = {X > VaRnα(X)}. As VaR

is non-flat from the left at (nα,X), we have P(A) = nα. Let (A1, . . . , An) be a partition of A with

P (Ai) = α for i ∈ [n]. Also, let Xi = (X −m)1Ai
for i ∈ [n− 1] and Xn = (X −m)1{An∪Ac} +m

where m = VaRnα(X) is a constant. It follows that
∑n

i=1Xi = X, and it is clear that X =

(X1, . . . , Xn) is an α-CE model; such a construction is essentially the one in Embrechts et al.

(2018, Theorem 2). More generally, we give a sufficient condition for X to satisfy the α-CE

1Wang and Zitikis (2021) used the “large α” convention, and hence our α-concentration corresponds to their

(1− α)-concentration.
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model. A random vector (X,Y ) is said to be counter-monotonic if (X,−Y ) is comonotonic. If

each pair (Xi, Xj) is counter-monotonic for i ̸= j, and for each i ∈ [n], P(Xi > VaRα(Xi)) = α

and VaRα(Xi) = ess-inf(Xi), then X follows an α-CE model. For recent results on pairwise

counter-monotonicity, see Lauzier et al. (2023).

In the next result, we summarize several dependence structures that correspond to special

values 0, 1 and n of DQVaR
α and the special values 0 and 1 of DQES

α .

Theorem 1. For α ∈ (0, 1) and n ⩾ 2, the following hold:

(i)
{
DQVaR

α (X) | X ∈ Xn
}
= [0,min{n, 1/α}] and

{
DQES

α (X) | X ∈ Xn
}
= [0, 1].

(ii) For ρ being VaR or ES, DQρ
α(X) = 0 if and only if

∑n
i=1Xi ⩽

∑n
i=1 ρα(Xi) a.s. In case∑n

i=1Xi is a constant, DQVaR
α (X) = 0 if α < 1/n and DQES

α (X) = 0.

(iii) For ρ being VaR or ES, if X is α-concentrated, then DQρ
α(X) ⩽ 1. If, in addition, ρ is

continuous and non-flat from the left at (α,
∑n

i=1Xi), then DQρ
α(X) = 1.

(iv) If α < 1/n and X has an α-CE model, then DQVaR
α (X) = n and DQES

nα(X) = 1.

Proof. (i) We first prove the case of VaR. By Corollary 1 of Embrechts et al. (2018), we have

VaRnα

(
n∑

i=1

Xi

)
⩽

n∑
i=1

VaRα(Xi),

which implies α∗ ⩽ nα, and hence DQVaR
α (X) ⩽ n. By definition, α∗ ∈ [0, 1], and hence 0 ⩽

DQVaR
α (X) ⩽ 1/α. To summarize,

{
DQVaR

α (X) | X ∈ Xn
}
⊆ [0,min{n, 1/α}].

Next, we show that every point in the interval [0,min{n, 1/α}] is attainable by DQVaR
α . Take

any X ∈ Xn and let a = DQVaR
α (X). Since DQVaR

α satisfies [LI], we can replace each component

Xi of X with Xi −VaRα(Xi) for i ∈ [n]. Hence, it is safe to assume that VaRα of each component

of X is 0. Let Z = X1A where A ∈ F is independent of X and P(A) = p ∈ (0, 1). Since the

mapping F 7→ VaRα(X) where X ∼ F has convex level sets (e.g., Gneiting (2011)), VaRα of each

component of Z is 0. By (2), we have

DQVaR
α (Z) =

1

α
P

(
n∑

i=1

Zi > 0

)
=
p

α
P

(
n∑

i=1

Xi > 0

)
= pDQVaR

α (X).

Since p ∈ (0, 1) is arbitrary, any point in [0, a] belongs to the range of DQVaR
α . To complete the

proof, it suffices to construct X such that DQVaR
α (X) = min{n, 1/α}.

In case α ⩾ 1/n, let X follow an n-dimensional multinomial distribution with parameters

(1/n, . . . , 1/n). It is clear that
∑n

i=1Xi = 1. Since α ⩾ 1/n, then VaRα(Xi) = 0. In this case,

by (2), DQVaR
α (X) = 1/α. In case α < 1/n, we can find X satisfying DQVaR

α (X) = n, which is

constructed in part (iv) of the proof below.
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Next, we prove the case of ES. Since ES satisfies [SA], the range of DQES
α is contained in

[0, 1]. Take any t ∈ [0, 2], and let each of X1 and X2 follow a uniform distribution on [−1, 1]

such that X1 + X2 is uniformly distributed on [−t, t]. The existence of such (X1, X2) is shown

by Theorem 3.1 of Wang and Wang (2016). Let Xi = 0 for i = 3, . . . , n. We can easily compute

ESα(X1) = ESα(X2) = 1− α and ESβ(X1 +X2) = t(1− β). Hence,

DQES
α (X1, . . . , Xn) =

1

α
inf{β ∈ (0, 1) : t(1− β) ⩽ 2− 2α} =

1

α

(
1− 2− 2α

t

)
+

.

For letting t vary in [0, 2], we get that every point in [0, 1] is attained by DQES
α .

(ii) The first part follows directly from Theorem 2 (i) of Han et al. (2022). In particular,

if
∑n

i=1Xi is a constant, we have VaR0 (
∑n

i=1Xi) = VaRnα (
∑n

i=1Xi) ⩽
∑n

i=1 VaRα(Xi) for

α < 1/n, and ES0 (
∑n

i=1Xi) = ESα (
∑n

i=1Xi) ⩽
∑n

i=1 ESα(Xi). Thus, we have DQES
α (X) = 0 if

α < 1/n and DQES
α (X) = 0.

(iii) By Theorem 6 in Wang and Zitikis (2021), if X is α-concentrated, we have

VaRα

(
n∑

i=1

Xi

)
⩽

n∑
i=1

VaRα (Xi) ,

which implies α∗ ⩽ α and then DQVaR
α (X) ⩽ 1. Further, as VaR is continuous and non-flat from the

left at (α,
∑n

i=1Xi), by Theorem 6 in Wang and Zitikis (2021), the inequality above is an equality.

Thus, we have α∗ = α, which leads to DQVaR
α (X) = 1. Moreover, from Theorem 5 of Wang and

Zitikis (2021), we know that ESα (
∑n

i=1Xi) =
∑n

i=1 ESα (Xi) if (X1, . . . , Xn) is α-concentrated.

Combining with the fact that ESα(
∑n

i=1Xi) is non-flat from left at (α,X), we have DQES
α (X) = 1.

(iv) As X1, . . . , Xn are (nα)-concentrated, there exists an event B such that B is a tail event

for all Xi and P(B) = nα. Let Bi = {Xi > VaRα(Xi)}. By Lemma A.3 of Wang and Zitikis

(2021), we have {Xi > VaRnα(Xi)} ⊆ B. As VaRα(Xi) ⩾ VaRnα(Xi), it gives Bi ⊆ B for all

i ∈ [n]. From P(Xi ⩾ VaRα(Xi)) ⩾ nα, we know that Xi(ω) ⩾ VaRα(Xi) for all ω ∈ B. Further,

as B1, . . . , Bn are mutually exclusive, we have Xi(ω) > VaRα(Xi) and Xj(ω) = VaRα(Xj) for

all ω ∈ Bi and j ̸= i. Hence, for all ω ∈
⋃n

i=1B, we have
∑n

i=1Xi(ω) >
∑n

i=1 VaRα(Xi) while∑n
i=1Xi(ω) ⩽

∑n
i=1 VaRα(Xi) for ω ∈ (

⋃n
i=1Ai)

c
=
⋂n

i=1A
c
i . Therefore, if α < 1/n,

P

(
n∑

i=1

Xi >

n∑
i=1

VaRα(Xi)

)
= P

(
n⋃

i=1

Bi

)
=

n∑
i=1

P(Bi) = nα.

By (2), we have DQVaR
α (X) = n.

For the case of ES, as X1, . . . , Xn are (nα)-concentrated, by Theorem 5 of Wang and Zi-

tikis (2021), we have ESnα (
∑n

i=1Xi) =
∑n

i=1 ESnα (Xi). Together with the fact that β 7→

ESβ (
∑n

i=1Xi) is strictly decreasing at β = nα, we get that DQES
nα(X) = 1.

9



Note that comonotonicity is stronger than α-concentration, and hence it is a sufficient condi-

tion for (iii) in Theorem 1 replacing α-concentration.

In summary, both DQVaR
α and DQES

α take values on a bounded interval. In contrast, the

diversification ratio DRVaRα is unbounded, and DRESα is bounded above by 1 only when the

ES of the total risk is non-negative. The continuous ranges of DQs also give more information

on diversification. Moreover, similarly to the continuity axiom of preferences (e.g., Föllmer and

Schied (2016)), a bounded interval can provide mathematical convenience for applications. The

values of DQs are simple to interpret. To be specific, for DQVaR
α , its value is 0 if there is a very

good hedge in the sense of Theorem 1 (ii); its value is 1 if there is strong positive dependence such

as comonotonicity, and its value is n if there is strong negative dependence conditional on the tail

event. For DQES
α , its value is 0 if there is a very good hedge in the sense of Theorem 1 (ii) and its

value is 1 if there is strong positive dependence such as comonotonicity or α-concentration.

4 Diversification for large portfolios

In this section, we will focus on the asymptotic behavior of DQ for large portfolios. First, since

the independent portfolio is widely recognized as an effectively diversified portfolio, we anticipate

that DQ for this type of portfolio would be close to zero as n tends to ∞.

Theorem 2. Let X1, X2, . . . be a sequence of uncorrelated random variables in L2. Assume

supi∈N var(Xi) <∞ and infi∈N{ρα(Xi)− E[Xi]} > 0. For α ∈ (0, 1) and ρ being VaR or ES,

lim
n→∞

DQρ
α(X1, . . . , Xn) = 0. (5)

Proof. Let Xn = (X1, . . . , Xn) and Sn =
∑n

i=1Xi. As DQρ
α is location invariant, we can assume

that E[Xi] = 0 for i = 1, 2, . . . . Hence, by the L2-Law of Large Numbers in the form of Durrett

(2019, Theorem 2.2.3), we have Sn/n
L2

→ 0. (In fact, L1 convergence is sufficient to prove our

result.)

We first prove the case of VaR. Note that Sn/n
L2

→ 0 implies limn→∞ P(Sn/n > x) = 0 for all

x > 0. Let ε = infi∈N{ρα(Xi)− E[Xi]}. As VaRα(Xi) > ε, i = 1, 2, . . . , we have

P

(
Sn >

n∑
i=1

VaRα(Xi)

)
⩽ P (Sn/n > ε) → 0.

Thus, limn→∞ P(Sn >
∑n

i=1 VaRα(Xi)) = 0. By (2), we have

lim
n→∞

DQVaR(Xn) = lim
n→∞

1

α
P

(
Sn >

n∑
i=1

VaRα(Xi)

)
= 0.

Next, we prove the case of ES. As ES is a convex distortion risk measure, ES is L1-continuous

(see Rüschendorf (2013, Corollary 7.10)). Further, since ESβ(0) = 0, we have ESβ(Sn/n) → 0 as

10



n→ ∞ for all β ∈ (0, 1). As a result, for every β ∈ (0, 1), there exists Nβ such that ESβ(Sn/n) < ε

for all n > Nβ . Therefore, we have

α∗ = inf

{
β ∈ (0, 1) : ESβ(Sn) ⩽

n∑
i=1

ESα(Xi)

}
⩽ inf {β ∈ (0, 1) : ESβ(Sn/n) ⩽ ε)} → 0

as n→ ∞. Hence, we have DQES
α (Xn) = α∗/α→ 0 as n→ ∞.

Note that Theorem 2 does not imply that all independent portfolios are good hedges, because

(5) holds under some assumptions. In case the components of the portfolio have very heavy tails,

DQ based on VaR can be close to n even if the individual losses are iid, as we will see in Theorem

3 below.

Remark 5. In the special case that X1, X2, . . . are iid, Theorem 2 implies that, if ρα(X1) > E[X1],

we have

lim
n→∞

DQρ
α(X1, . . . , Xn) = 0

for ρ being VaR or ES.

Next, we focus on portfolios with exchangeable components, which may represent a homo-

geneous subgroup of assets from a large asset pool. An infinite sequence of random variables

X1, X2, . . . is said to be exchangeable if (X1, . . . , Xn)
d
= (Xπ(1), . . . , Xπ(n)) for all n ⩾ 2 and

π ∈ Sn, where Sn is the set of permutations of [n]. Exchangeability is closely related to iid se-

quence of random variables due to de Finetti’s theorem, which says that any infinite exchangeable

sequence is conditionally iid. However, for the exchangeable portfolio, the value of DQ does not

necessarily converge to 0 as n goes to infinity. By the Birkhoff–Khinchin theorem (see Aleksandr

and Khinchin (1949)), if E[|X1|] <∞, we have
∑n

i=1Xi/n→ E[X1|G] a.s. for some sub-σ-algebra

G ⊆ F . By (2), we get

DQVaR
α (X1, . . . , Xn) →

1− F (VaRα(X1))

α
as n→ ∞,

and

DQES
α (X1, . . . , Xn) →

1− F̃ (ESα(X1))

α
as n→ ∞,

where F is the distribution of E[X1|G] and F̃ is the superquantile transform of F .

The above formulas depend on G which may not be explicit. In the next proposition, we

derive an upper bound on the limit.

Proposition 1. Let X1, X2, . . . be a sequence of exchangeable random variables in L2. Denote

by µ = E[X1], σ
2 = var(X1) and r = corr(X1, X2). For α ∈ (0, 1) and ρ being VaR or ES, if

ρα(X1) > µ, then

lim
n→∞

DQρ
α(X1, . . . , Xn) ⩽

1

α

rσ2

rσ2 + (ρα(X1)− µ)2
. (6)
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Proof. Let Sn =
∑n

i=1Xi. As (X1, . . . , Xn) is exchangeable, we have E[Sn] = nµ and var(Sn) =

(n+ n(n− 1)r)σ2. The mean and variance of Sn imply the bound

ρβ(Sn) ⩽ nµ+ σ
√
n+ n(n− 1)r

√
1− β

β

for all β ∈ (0, 1); see Table 1 of Li et al. (2018). As a result, we have

DQρ
α(X1, . . . , Xn) ⩽

1

α
inf

{
β ∈ (0, 1) : nµ+ σ

√
n+ n(n− 1)r

√
1− β

β
⩽ nρα(X1)

}

=
1

α

1+(n−1)r
n σ2

1+(n−1)r
n σ2 + (ρα(X1)− µ)2

.

Sending n→ ∞, we get the desired result.

The upper bound (6) on limn→∞ DQρ
α(X1, . . . , Xn) in Proposition 1 decreases as the cor-

relation r between assets decreases. Intuitively, this means that less positive dependence leads

to greater diversification. In particular, if r ↓ 0, then limn→∞ DQρ
α(X1, . . . , Xn) → 0. The up-

per bound (6) holds true also without exchangeability, as long as the average of the bivariate

correlations of assets converges to r and all assets are identically distributed.

5 Elliptical models

The most commonly used classes of multivariate distributions are the elliptical models which

include the multivariate normal and t-distributions as special cases. For a general treatment of

elliptical models in risk management, see McNeil et al. (2015). In this section, we study DQs based

on VaR and ES for elliptical models.

5.1 Explicit formulas for DQ

A random vector X is elliptically distributed if its characteristic function can be written as

ψ(t) = E
[
exp

(
it⊤X

)]
= exp

(
it⊤µ

)
τ
(
t⊤Σt

)
,

for some µ ∈ Rn, positive semi-definite matrix Σ ∈ Rn×n, and τ : R+ → R called the characteristic

generator. We denote this distribution by En(µ,Σ, τ). We will assume that Σ is not a matrix

of zeros. Each marginal distribution of an elliptical distribution is a one-dimensional elliptical

distribution with the same characteristic generator. The most common examples of elliptical

distributions are normal and t-distributions. An n-dimensional t-distribution t(ν,µ,Σ) with ν > 0

has density function f given by (if |Σ| > 0)

f(x) =
Γ ((ν + n)/2)

Γ(ν/2)νn/2πn/2 |Σ|1/2

(
1 +

1

ν
(x− µ)⊤Σ−1(x− µ)

)−(ν+n)/2

,

12



where Γ is the gamma function and |Σ| is the determinant of the dispersion matrix Σ.

We remind the reader that for elliptical models, VaR and ES behave very similarly. For

instance, VaRα is subadditive for α ∈ (0, 1/2) in this setting; see (McNeil et al., 2015, Theorem

8.28). Moreover, for X ∼ En(µ,Σ, τ) and a ∈ Rn, both VaRα(a
⊤X) and ESα(a

⊤X) have the

form y
√
a⊤Σa + a⊤µ for some constant y being yVaR

α := VaRα(Y ) or yES
α := ESα(Y ) where

Y ∼ E1(0, 1, τ). As a consequence, the behaviour of DQ based on VaR is similar to that based on

ES, except for the case of infinite mean.

For a positive semi-definite matrix Σ, we write Σ = (σij)n×n, σ
2
i = σii, and σ = (σ1, . . . , σn),

and define the constant

kΣ =

∑n
i=1

(
e⊤i Σei

)1/2
(1⊤Σ1)

1/2
=

∑n
i=1 σi(∑n

i,j σij

)1/2 ∈ [1,∞), (7)

where 1 = (1, . . . , 1) ∈ Rn and e1, . . . , en are the column vectors of the n × n identity matrix In.

Moreover, kΣ = 1 if and only if Σ = σσ⊤, which means that X ∼ En(µ,Σ, τ) is comonotonic.

Explicit formulas and the limiting behavior of DQs based on VaR and ES for elliptical models

are given by the following few results.

Proposition 2. Suppose that X ∼ En(µ,Σ, τ). We have, for α ∈ (0, 1),

DQVaR
α (X) =

1− F (kΣVaRα(Y ))

α
and DQES

α (X) =
1− F̃ (kΣESα(Y ))

α
,

where Y ∼ E1(0, 1, τ) with distribution function F , and F̃ is the superquantile transform of F in

(2). Moreover,

(i) α 7→ DQVaR
α (X) takes value in [0, 1] on (0, 1/2] and it takes value in [1, 2] on (1/2, 1);

(ii) kΣ 7→ DQVaR
α (X) is decreasing for α ∈ (0, 1/2] and increasing for α ∈ (1/2, 1);

(iii) kΣ 7→ DQES
α (X) is decreasing for α ∈ (0, 1).

Proof. We first consider the case of VaR. Since X ∼ En(µ,Σ, τ), the linear structure of ellipitical

distributions gives
∑n

i=1Xi ∼ E1(I
⊤µ, I⊤ΣI, τ). That is,

∑n
i=1Xi

d
=
∑n

i=1 µi + ∥1⊤A∥2Y , where

A is the Cholesky decomposition of Σ. Also, we have VaRα(Xi) = µi + ∥e⊤i A∥2VaRα(Y ). By (2),

DQVaR
α (X) =

1

α
P

(
n∑

i=1

Xi >

n∑
i

µi + ∥e⊤i A∥2VaRα(Y )

)

=
1

α
P

(
n∑

i=1

µi + ∥1⊤A∥2Y >

n∑
i

µi + ∥e⊤i A∥2VaRα(Y )

)
=

1− F (kΣVaRα(Y ))

α
.

By replacing VaR with ES and
∑n

i=1Xi with ESU (
∑n

i=1Xi), we can get the first formula of

DQES
α (X).
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(i) For α ∈ (0, 1/2], we have VaRα (Y ) ⩽ kΣVaRα(Y ) and 1− α ⩽ F (kΣVaRα(Y )) ⩽ 1. Hence,

0 ⩽ DQVaR
α (X) ⩽ 1.

For α ∈ (1/2, 1), VaRα (Y ) ⩾ kΣVaRα(Y ) and α ⩽ 1 − F (kΣVaRα(Y )) ⩽ 1. Hence, 1 ⩽

DQVaR
α (X) ⩽ 1/α ⩽ 2.

(ii) If α ∈ (0, 1/2], then VaRα(Y ) ⩾ 0, and thus DQVaR
α (X) decreases in kΣ. If α ∈ (1/2, 1), then

VaRα(Y ) ⩽ 0, and thus DQVaR
α (X) increases in kΣ.

(iii) For α ∈ (0, 1), ESα(Y ) ⩾ 0. Hence, DQES
α (X) increases in kΣ.

In the discussions below, we will assume α ∈ (0, 1/2), which is the most common setting in

risk management. In Proposition 2, we see that, for α ∈ (0, 1/2), DQVaR
α (X) ∈ [0, 1]. This is in

contrast to Theorem 1, where the range of DQVaR
α is [0, n] instead of [0, 1], when we do not restrict

to elliptical models. This phenomenon should not be surprising, because, as we mentioned before,

VaRα for α ∈ (0, 1/2) is similar to ESα for elliptical models, and DQES
α has range [0, 1].

In case Y ∼ E1(0, 1, τ) has a positive density on R, we can see from Proposition 2 that

DQVaR
α (X) = 1 if and only if kΣ = 1 (i.e., X is comonotonic) or VaRα(Y ) = 0 (i.e., α = 1/2).

Similarly, DQES
α (X) = 1 if and only if kΣ = 1.

In case the elliptical distribution is asymptotically uncorrelated, we will see that DQVaR
α (X) →

0 and DQES
α (X) → 0 as n → ∞. This is consistent with our intuition that, if the individual risks

are asymptotically uncorrelated, then full diversification can be achieved asymptotically, thus the

diversification index goes to 0. The value ACΣ =
∑n

i,j σij/(
∑n

i=1 σi)
2 = 1/k2Σ will be called the

average correlation (AC) of Σ.

Proposition 3. Suppose that X ∼ En(µ,Σ, τ).

(i) Let Y ∼ E1(0, 1, τ) and f be the density function of Y . We have

lim
α↓0

DQVaR
α (X) = lim

x→∞
kΣ
f(kΣx)

f(x)
if VaR0(Y ) = ∞ and the limit exists, (8)

and limα↓0 DQVaR
α (X) = 0 if VaR0(Y ) <∞.

(ii) If limn→∞ ACΣ = 0, then

lim
n→∞

DQVaR
α (X) = lim

n→∞
DQES

β (X) = 0

for α ∈ (0, 1/2) and β ∈ (0, 1).

Proof. (i) If VaR0(Y ) < ∞, then VaR0(Y ) ⩽ kΣVaR0(Y ) as kΣ ⩾ 1. Hence, DQVaR
0 (X) = 0. If

VaR0(Y ) = ∞, then VaR0(Y ) > kΣVaRα(Y ) for α > 0. Therefore,

lim
α→0

DQVaR
α (X) = lim

α→0

1− F (kΣVaRα(Y )))

α
= lim

α→0
kΣ
f (kΣVaRα(Y )))

f(VaRα(Y )))
= lim

x→∞
kΣ
f (kΣx)

f(x)
,
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and we get the desired result.

(ii) We only show the proof of DQVaR
α as the result for DQES

β can be obtained along the same

analogy. By Proposition 2, it is clear that ACΣ → DQVaR
α (X) is increasing for α ∈ (0, 1/2) and

ACΣ → DQES
β (X) is increasing for α ∈ (0, 1). Moreover, if ACΣ goes to 0 as n → ∞, we have

limn→∞ kΣ = ∞. Thus, we have DQVaR
α (X) → 0 as n→ ∞ by Proposition 2.

Explicit formulas of (8) for normal and t-distributions are provided in Section 5.2.

Remark 6. In general, we do not have a limiting result for DQES
α in the form of Proposition 3

(i). If X ∼ t(ν,µ,Σ) for ν > 1, then DQES
α has the same limit as DQVaR

α in (8) as α ↓ 0 because

VaRα(Y )/ESα(Y ) has a constant limit (ν − 1)/ν for a t-distributed Y by the Karamata theorem;

see Theorem A.7 of McNeil et al. (2015).

From the results above, DQVaR
α (X) and DQES

α (X) depend on both τ and α. In sharp contrast,

DR of a centered elliptical distribution is always 1/kΣ, which ignores the shape of the distribution.

More precisely, for X ∼ En(0,Σ, τ) and α ∈ (0, 1/2), we have

DRVaRα(X) =
VaRα(

∑n
i=1Xi)∑n

i=1 VaRα(Xi)
=

(∑n
i,j σij

)1/2
VaRα(Y )∑n

i=1 σiVaRα(Y )
=

1

kΣ
, (9)

and similarly, DRESα(X) = 1/kΣ. Note that in this case, DRVaRα and DRESα do not depend on

τ , α or whether the risk measure is VaR or ES. Indeed, DR based on var or SD also has the same

value 1/kΣ.

For X ∼ En(µ,Σ, τ) with µ ̸= 0, DRVaRα(X) and DRESα(X) depend also on µ, which is

arguably undesirable as it conflicts location invariance. Nevertheless, limα↓0 DRVaRα(X) = 1/kΣ if

VaR0(Y ) = ∞ (i.e., the value taken by Y is unbounded from above), and this limit does not depend

on µ. On the other hand, DQVaR
α (X) has a limit in (8) which depends on both kΣ and τ . The

above observations suggest that DQ is more comprehensive than DR by utilizing the information

on the shape of the distribution.

A similar result to Proposition 3 (ii) holds for DR of centered elliptical distributions. More

precisely, If α ∈ (0, 1/2), µ = 0, and limn→∞ ACΣ = 0, then we have limn→∞ DRVaRα(X) = 0 by

(9), and similarly, limn→∞ DRESα(X) = 0. These limits do not hold if µ ̸= 0.

5.2 Normal and t-distributions

Next, we take a close look at the two most important elliptical distributions used in finance

and insurance, namely the multivariate normal distribution and the multivariate t-distribution.

The explicit formulas for DQ for these distributions are available through the explicit formulas of

VaR and ES; see Examples 2.14 and 2.15 of McNeil et al. (2015).
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Han et al. (2022) proposed three simple models where the components of portfolio vectors

follow the iid normal model, iid t-model and the common shock t-model, respectively, and showed

that the diversification is the strongest according to DQ for the iid normal model and the iid t-

model has a smaller DQ than the common shock t-model. In contrast, DR reports a similar value

for all three models; see their Section 5.2 for details. Therefore, DQ has the nice feature that it

can capture heavy tails and common shocks.

We present some formulas and numerical results for correlated normal and t-models. We focus

our discussions mainly on DQVaR
α as the case of DQES

α is similar. We first compute the limit of DQ

as α ↓ 0 according to (8). By direct calculation,

lim
α↓0

DQVaR
α (X) = 1{kΣ=1} if X ∼ N(µ,Σ); (10)

lim
α↓0

DQVaR
α (X) = k−ν

Σ if X ∼ t(ν,µ,Σ). (11)

The above two values properly reflect the fact that the normal distribution is tail independent

unless kΣ = 1 (i.e., comonotonic), whereas the t-distribution is tail dependent; see Examples 7.38

and 7.39 of McNeil et al. (2015). DQ is able to capture this phenomenon well, by providing, for α

close to 0, DQVaR
α ≈ 0 (strong diversification) for normal distribution and DQVaR

α ≈ k−ν
Σ (moderate

diversification for common choices of Σ and ν; see Figure 3) for a t-distribution. On the other

hand, DR of centered normal and t-distributions is always 1/kΣ, which fails to distinguish the tail

of the t-distribution from that of the normal distribution (see (9)).

For numerical illustrations, we consider two specific dispersion matrices, parameterized by

r ∈ [0, 1] and n ∈ N,

Σ1 = (σij)n×n, where σii = 1 and σij = r for i ̸= j, and

Σ2 = (σij)n×n, where σii = 1 and σij = r|j−i| for i ̸= j.

Note that Σ1 represents an equicorrelated model and Σ2 represents an autoregressive model

AR(1). For r = 0, r = 1 or n = 2, these two dispersion matrices are identical. We take four models

Xi ∼ N(µ,Σi) and Yi ∼ t(ν,µ,Σi), i = 1, 2, and we will let r, ν, α, n vary. Note that the location

µ does not matter in computing DQ, and we can simply take µ = 0. The default parameters are

set as r = 0.3, n = 4, ν = 3 and α = 0.05 if not explained otherwise.

DQ for the t-models as the parameter of degrees of freedom ν varies

Figure 1 presents the values of DQ for the t-models with varying ν, where ν ∈ (0, 10] for VaR

and ν ∈ (1, 10] for ES. We observe a monotonic relation that DQVaR
α and DQES

α are decreasing in ν.

In particular, if ν is close to 0, we see that DQVaR
α ≈ 1 which means there is almost no diversification
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Figure 1. DQ and DR based on VaR for ν ∈ (0, 10] and ES for ν ∈ (1, 10] with fixed α = 0.05,

r = 0.3 and n = 4
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Figure 2. DQ based on VaR and ES for r ∈ [0, 1] with fixed α = 0.05, ν = 3, and n = 4
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effect for such super heavy-tailed models. On the other hand, DR completely ignores ν and always

reports the same value. Note that the values of DQ and DR are not directly comparable as they

are not on the same scale.

DQ for elliptical models as the correlation parameter r varies

In Figure 2, we report how DQ changes over r ∈ [0, 1] in the four models. Intuitively, for

r close to 1 which corresponds to comonotonicity, DQ is close to 1 in all models since there is

no or very weak diversification in this case. More interestingly, for r close to 0, there is very

strong diversification for the normal models, meaning DQVaR
α ≈ 0 and DQES

α ≈ 0, whereas for the

t-models, DQVaR
α and DQES

α are clearly away from 0. Note that the components of a t-distribution

are tail dependent even for zero or negative correlation (see Example 7.39 of McNeil et al. (2015)).
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Figure 3. DQ based on VaR and ES for α ∈ (0, 0.1) with fixed ν = 3, r = 0.3 and n = 4
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Hence, DQ is able to capture dependence created by the common factor in the t-model, in addition

to its correlation structure.

DQ for varying α and its limit

In Figure 3, we report DQVaR
α and DQES

α for α ∈ (0, 1) in the four models with correlation

matrices specified in Section 5.2. We can see from Figure 3 that DQ can be non-monotonic

with respect to α (see the curves of DQES
α for Xi ∼ t(ν,µ,Σi)). In addition, we can compute

kΣ1 = 1.4510 and kΣ2 = 1.6046. Hence, it can be anticipated from Proposition 2 that, since DQ is

decreasing in kΣ, models with Σ1 has larger DQ than the corresponding models with Σ2. Moreover,

as α ↓ 0, we can see that DQVaR
α converges to its corresponding limits in (10) and (11); also note

that DQES
α has the same limits as DQVaR

α for t-distributions as discussed in Remark 6.

DQ for elliptical models as the dimension n varies

Figure 4 is related to Section 5.2 and reports how DQ changes over n ∈ [2, 100] in the four

models. We choose r = 0.5 in this experiment for better visibility. As we can see, DQ decreases to

0 for models with the AR(1) dispersion Σ2, and DQ converges to a non-zero constant for models

with the equicorrelated dispersion Σ1. This is consistent with Proposition 3 (ii) because ACΣ1 → r

and ACΣ2
→ 0 as n→ ∞.

Cross-comparison between DQ based on VaR and ES

One may be tempted to compare values of DQ based on VaR to those based on ES. Although

we see from Figure 3 that the curve DQVaR
α often dominates the curve DQES

α for the same model,

such a comparison is not meaningful, since VaR and ES are not meant to be compared at the
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Figure 4. DQs based on VaR and ES for n ∈ [2, 100] with fixed α = 0.05, r = 0.5 and ν = 3
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same level α. For a fair comparison, one needs to associate a VaR level α to an ES level cα where

c ⩾ 1 is PELVE of Li and Wang (2022) defined via EScα(X) = VaRα(X) for X being normally

or t-distributed; note that the location and scale of X do not matter. The values of c, DQVaR
α

and DQES
cα for α = 0.01 are summarized in Table 1. As we observe from Table 1, the values of

DQs based on VaR and ES are quite close when the probability level is calibrated via PELVE.

This is consistent with the afore-mentioned fact that VaR behaves similarly to ES in the setting

of elliptical models.

Table 1. Values of DQs based on VaR at level α = 0.01 and ES at level cα, where n = 4 and

r = 0.3

c cα DQVaR
α DQES

cα

X1 ∼ N(µ,Σ1) 2.58 0.0258 0.0369 0.0377

X2 ∼ N(µ,Σ2) 2.58 0.0258 0.0024 0.0025

Y1 ∼ t(3,µ,Σ1) 3.31 0.0331 0.3558 0.3373

Y2 ∼ t(3,µ,Σ2) 3.31 0.0331 0.2094 0.1961

6 Multivariate regularly varying models

Heavy-tailed distributions are known to exhibit complicated and even controversial phenom-

ena in finance (see e.g., Ibragimov et al. (2011)), and they are typically modelled via multivariate

regularly varying (MRV) models, important objects in Extreme Value Theory. Such models are

particularly relevant for tail risk measures such as VaR and ES at high levels (McNeil et al. (2015)).
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In particular, MRV models have been applied to DR based on VaR (e.g., Mainik and Rüschendorf

(2010) and Mainik and Embrechts (2013)). Since VaRα(X)/ESα(X) → (γ − 1)/γ as α ↓ 0 for

X ∈ RVγ with finite mean (see e.g., McNeil et al. (2015, p.154)), we only present the case of VaR.

Definition 4. A random vector X ∈ Xn has an MRV model with some γ > 0 if there exists a

Borel probability measure Ψ on the unit sphere Sn := {s ∈ Rn : ∥s∥ = 1} such that for any t > 0

and any Borel set S ⊆ Sn with Ψ(∂S) = 0,

lim
x→∞

P(∥X∥ > tx, X/∥X∥ ∈ S)

P(∥X∥ > x)
= t−γΨ(S),

where ∥ · ∥ is the L1-norm (one could use any other norm equivalent to the L1-norm). We call γ

the tail index of X and Ψ the spectral measure of X. This is written as X ∈ MRVγ(Ψ).

The univariate regular variation with tail index γ is defined as

for all t > 0, lim
x→∞

1− FX(tx)

1− FX(x)
= t−γ ,

where F is the distribution function of X. We write X ∈ RVγ for this property. As a consequence

of X ∈ MRVγ(Ψ), ∥X∥ satisfies univariate regular variation with the same tail index γ.

Regular variation is one of the basic notions for describing heavy-tailed distributions and

dependence in the tails. In what follows, we limit our discussion to X ∈ MRVγ(Ψ) under the

non-degeneracy condition:

Ψ ({s ∈ Sn : s ∈ (0,∞)n}) > 0.

Note that if X ∈ MRVγ(Ψ) satisfies non-degeneracy condition, we have w⊤X ∈ RVγ (See Mainik

and Embrechts (2013)).

Let X ∈ MRVγ(Ψ) be a random vector with identical marginals. If X1, . . . , Xn have a finite

mean, then VaR is asymptotically subadditive in the following sense (see e.g., Embrechts et al.

(2009))

VaRα

(
n∑

i=1

Xi

)
⩽

n∑
i=1

VaRα(Xi) for α close enough to 0,

but the inequality is reversed if X1, . . . , Xn do not have a finite mean. Next, in contrast to

Proposition 2 and Remark 5, we will show that DQ based on VaR can be arbitrarily close to n

even if the individual losses are iid.

Theorem 3. Suppose that X ∈ MRVγ(Ψ) and X has positive joint density on the support of X.

Then,

lim
α↓0

DQVaR
α (X) = η1

(
n∑

i=1

η1/γei

)−γ

, (12)

where ηx =
∫
Sn
(
x⊤s

)γ
+
Ψ(ds) for x ∈ Rn. Moreover, if X1, . . . , Xn are iid random variables, then

DQVaR
α (X) → n1−γ as α ↓ 0.
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Proof. A more general result of (12) and its proof are shown in Proposition 5, where the asymptotic

behavior of DQVaR
α for weighted portfolios is investigated. Since DQ is scale-invariant, by taking

w = (1/n, . . . , 1/n) in Proposition 5, it gives

lim
α↓0

DQVaR
α (X) = lim

α↓0
DQVaR

α (1/nX1, . . . , 1/nXn) =
ηw(∑n

i=1 wiη
1/γ
ei

)γ ,
where ηw = n−γ

∫
Sn
(
1⊤s

)γ
+
Ψ(ds) = n−γη1. As a result, we have

lim
α↓0

DQVaR
α (X) = η1

(
n∑

i=1

η1/γei

)−γ

.

If X1, . . . , Xn are iid non-negative random variables, by Example 3.1 of Embrechts et al.

(2009), we have

η
1/γ
1 = lim

α↓0

VaRα (
∑n

i=1Xi)

VaRα(X1)
= n1/γ ,

which implies that η1 = n. Moreover,

(ηei
)1/γ = lim

α↓0

VaRα(Xi)

VaRα(X1)
= 1.

Hence, limα↓0 DQVaR
α (X) = n1−γ . Further, if γ ↓ 0, then DQVaR

α (X) → n.

The α-CE model in Theorem 1 with DQVaR
α (X) = n is complicated and involves both positive

and negative dependence. Theorem 3 suggests that DQVaR
α (X) ≈ n can be obtained for some very

heavy-tailed iid model with γ close to 0. Therefore, the upper bound n on DQVaR
α is relevant when

analyzing very heavy-tailed risks such as catastrophe losses; we refer to Embrechts et al. (1997)

for a general treatment of heavy-tailed risks in insurance and finance.

Remark 7. Suppose that X1, . . . , Xn are iid random variables with X1 ∈ RVγ having positive

density over its support. We have X = (X1, . . . , Xn) ∈ MRVγ(Ψ) by Kulik and Soulier (2020,

Example 2.1.4), and thus DQVaR
α (X) → n1−γ as α ↓ 0.

Remark 8. We note that the intersection between elliptical distributions and MRV distributions

is non-empty. For X ∼ En(µ,Σ, τ), we have

X
d
= µ+RAU,

where A ∈ Rn×n satisfying AA⊤ = Σ, U is uniformly distributed on the Euclidean sphere Sd2
and R is a non-negative random variable that is independent of U . Theorem 4.3 of Hult and

Lindskog (2002) showed that X has an MRV model if and only if R ∈ RVγ for some γ > 0.

Assume that the elliptically distributed X is in MRVγ(Ψ) with γ > 0. As a result, we have
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Y ∼ E1(0, 1, τ) ∈ RVγ . Let f be the density of Y . Following Proposition 3 (i) and the fact that

VaRα(Y )/ESα(Y ) → (γ − 1)/γ as α ↓ 0 for Y ∈ RVγ with finite mean, we have

lim
α↓0

DQES
α (X) = lim

α↓0
DQVaR

α (X) = lim
x→∞

kΣ
f(kΣx)

f(x)
= k−γ

Σ .

If X follows an elliptical distribution in the MRV class, then DQES
α (X) has the same limit as

DQVaR
α (X). For example, if X ∼ t(ν, µ,Σ), we have X ∈ MRVγ(Ψ) with γ = ν as we have shown

in (11) that limα↓0 DQVaR
α (X) = limα↓0 DQES

α (X) = k−ν
Σ .

To end this section, we show that if there exists an asset with a strictly heavier tail than the

other assets in the portfolio, then DQ based on VaR tends to 1 as α ↓ 0.

Proposition 4. Suppose Xi ∈ RVγi for i ∈ [n] such that γ1 < mini=2,...,n γi. If X1, . . . , Xn have

positive densities on their support, then limα↓0 DQVaR
α (X) = 1.

Proof. Since γ1 < mini=2,...,n γi, X1 has a heavier tail than X2, . . . , Xn. As a result, we have∑n
i=1Xi ∈ RVγ1

regardless of the dependence between all random variables (See Kulik and Soulier

(2020, Lemma 1.3.2)), that is,

lim
x→∞

P (
∑n

i=1Xi > x)

P(X1 > x)
= 1.

Moreover,X1 having a heavier tail thanX2, . . . , Xn also implies that limα↓0 VaRα(Xi)/VaRα(X1) =

0 for all i = 2, . . . , n, and thus limα↓0
∑n

i=1 VaRα(Xi)/VaRα(X1) = 1. Therefore, we have

lim
α↓0

DQVaR
α (X) = lim

α↓0

P (
∑n

i=1Xi >
∑n

i=1 VaRα(Xi))

α

= lim
α↓0

P (
∑n

i=1Xi >
∑n

i=1 VaRα(Xi))

P(X1 > VaRα(X1))

= lim
α↓0

P (
∑n

i=1Xi >
∑n

i=1 VaRα(Xi))

P(X1 >
∑n

i=1 VaRα(Xi))

P(X1 >
∑n

i=1 VaRα(Xi))

P(X1 > VaRα(X1))

= lim
α↓0

(∑n
i=1 VaRα(Xi)

VaRα(X1)

)−γ1

= 1.

Thus, we get the desired result.

Proposition 4 illustrates the intuitive fact that, if the tail of one asset is strictly heavier than

the others, then the portfolio has no diversification in the tail region, i.e., as α ↓ 0.

7 Optimization for the elliptical models and MRV models

We analyze portfolio diversification for a random vector X ∈ Xn representing losses from n

assets and a vector w = (w1, . . . , wn) ∈ ∆n of portfolio weights, where

∆n := {x ∈ [0, 1]n : x1 + · · ·+ xn = 1} .
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The total loss of the portfolio is w⊤X. We write w⊙X = (w1X1, . . . , wnXn) which is the portfolio

loss vector with the weight w. For a portfolio selection problem, we need to treat DQρ
α(w⊙X) as

a function of the portfolio weight w.

Han et al. (2022) studied the following optimization diversification problem

min
w∈∆n

DQVaR
α (w ⊙X) and min

w∈∆n

DQES
α (w ⊙X); (13)

for general X. Moreover, efficient algorithms are obtained to optimize DQVaR
α and DQES

α in real-

data applications; see their Sections 6.2 and 7. In this section, we focus on the portfolio optimization

problems for elliptical and MRV models.

For the elliptical models, the optimization of DQVaR
α , DQES

α boils down to maximizing kwΣw⊤

in (7) since DQ of w ⊙ X is decreasing in kwΣw⊤ . We assume that Σ is invertible, and write

Σ = (σij)n×n, with diagonal entries σii = σ2
i , i ∈ [n], and σ = (σ1, . . . , σn). Note that

kwΣw⊤ =
w⊤σ√
w⊤Σw

,

and we immediately give the optimizer of (13) for the elliptical models.

Theorem 4. Suppose that X ∼ En(µ,Σ, τ), Σ is invertible and α ∈ (0, 1/2), then the vector

w∗ = argmax
w∈∆n

w⊤σ√
w⊤Σw

(14)

minimizes (13), that is,

min
w∈∆n

DQρ
α(w ⊙X) = DQρ

α(w
∗ ⊙X) (15)

for ρ being VaR or ES.

The optimization problem (14) is well studied in the literature, and the existence and unique-

ness of the solution can be verified if Σ is invertible, see, e.g. Choueifaty and Coignard (2008).

Note that the optimizer for problem (15) does not depend on the tail probability level α. It is

straightforward to see that

argmin
w∈∆n

DRρα(w ⊙X) = argmax
w∈∆n

w⊤µ+w⊤σρα(Y )

w⊤µ+
√
w⊤Σwρα(Y )

for ρ being VaR or ES and Y ∼ E1(0, 1, τ). This optimizer is the same as that of (15) if µ = 0.

This shows that for centered elliptical models, optimizing DQ and optimizing DR are equivalent

problems, both of which are further equivalent to optimizing DR based on SD (assuming it ex-

ists). This is intuitive as for a fixed τ , centered elliptical distributions are parameterized by their

dispersion matrices.
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Example 1. Assume that X ∼ t(ν,µ,Σ) where ν = 3 and the dispersion matrix is given by

Σ =

 1 0.5

0.5 2

 .

Clearly, DQ does not depend on µ. We show the curves of DQVaR
α (w ⊙ X) and DQES

α (w ⊙ X)

against the weight w1 with various values of α = 0.001, 0.01, 0.025, 0.05. It can be anticipated from

(14) that although DQ depends on α, the optimizer does not. By solving (14), we get w∗
1 = 0.5860

and w∗
2 = 0.4140, which corresponds to the observations in Figure 5. Recall that DQES

α is quite

flat when α varies in Figure 3, and hence curves of DQES
α (w ⊙X) look similar for different α.

Figure 5. Values of DQVaR
α (w ⊙X) and DQES

α (w ⊙X) for w1 ∈ [0, 1]

Next, we turn to the MRV model. The following result gives the limit of DQ of the portfolio

w ⊙ X where X follows an MRV model. Due to the same reason stated in Section 6, we only

present the case of VaR. In the proofs below, for any positive functions f and g, we write f(x) ≃

g(x) as x→ x0 to represent limx→x0
f(x)/g(x) = 1.

Proposition 5. Suppose that X ∈ MRVγ(Ψ) and X has positive joint density on the support of

X. Then, for w ∈ ∆n,

lim
α↓0

DQVaR
α (w ⊙X) = f(w),

where f(w) = ηw/
(∑n

i=1 wiη
1/γ
ei

)γ
and ηx =

∫
Sn
(
x⊤s

)γ
+
Ψ(ds) for x ∈ Rn.

Proof. If X ∈ MRVγ(Ψ) with γ ∈ (0, 1), we have (Lemma 2.2 of Mainik and Embrechts (2013))

lim
α↓0

VaRα (
∑n

i=1 wiXi)

VaRα (∥X∥1)
= η1/γw ,

and

lim
α↓0

n∑
i=1

wiVaRα (Xi)

VaRα (∥X∥1)
=

n∑
i=1

wiη
1/γ
ei

,
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where ∥X∥1 =
∑n

i=1 |Xi|. As X has positive joint density, VaRα is continuous for
∑n

i=1 wiXi.

Then we have VaRα∗(
∑n

i=1 wiXi) =
∑n

i=1 wiVaRα(Xi). Thus, it follows that

VaRα (
∑n

i=1 wiXi)

VaRα∗(
∑n

i=1 wiXi)
→ η

1/γ
w∑n

i=1 wiη
1/γ
ei

as α ↓ 0.

Since
∑n

i=1 wiXi ∈ RVγ , for c > 0,

VaRα (
∑n

i=1 wiXi)

VaRcα (
∑n

i=1 wiXi)
≃
(
1

c

)−1/γ

as α ↓ 0.

Let c = α∗/α, we have ( α
α∗

)−1/γ

→ η
1/γ
w∑n

i=1 wiη
1/γ
ei

.

Hence,

DQVaR
α (w ⊙X) =

α∗

α
→ ηw(∑n

i=1 wiη
1/γ
ei

)γ .
The desired result is obtained.

Proposition 5 allows us to approximately optimize DQVaR
α by minimizing f(w). For X ∈

MRVγ(Ψ) with γ > 1, by assuming Ψ
({

x ∈ Rn : a⊤x = 0
})

= 0 for any a ∈ Rn, which means

that all components are relevant for the extremes of X, the existence and uniqueness of w∗ =

argminw∈∆n
f(w) are guaranteed. In fact, the existence of w∗ is due to the continuity of f(w)

and the compactness of ∆n. To show uniqueness, we can rewrite the above minimization problem

as

min
w∈∆n

ηw s.t.

d∑
i=1

wiη
1/γ
ei

= 1.

Note that the set of constraints is compact and ηw is strictly convex, and hence w∗ is unique.

Example 2. Assume that Y1 and Y2 are iid following a standard t-distribution with ν > 1 degrees

of freedom. A random vector X = (X1, X2) is defined as

X = AY with A =

 1 0

r
√
1− r2

 .

The random vectors X and Y are not elliptically distributed. Using the results in Mainik and

Embrechts (2013), we have

ηw
η11

= (w1 + w2r)
ν
+
(
w2

√
1− r2

)ν
,

and
ηw
η12

=
(w1 + w2r)

ν
+
(
w2

√
1− r2

)ν
rν +

√
1− r2

ν .
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Hence,

f(w) =

w1

(
(w1 + w2r)

ν
+
(
w2

√
1− r2

)ν)− 1
ν

+ w2

(
(w1+ w2r)

ν
+
(
w2

√
1− r2

)ν
rν+

√
1− r2

ν

)− 1
ν

−ν

.

Take r = 0.3. We show the curves of DQVaR
α (w ⊙ X) against w1 for α = 0.001, 0.01, 0.025 and

ν = 2, 4. Also, we use f(w) to approximate DQVaR
α (w ⊙X) as α tends to 0. From Figure 6, we

can see that the optimizer w∗
1 is converging to the one that maximizes f(w) as α tends to 0.

Figure 6. Values of DQVaR
α (w ⊙X) with ν = 2 (left) and ν = 4 (right)
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Remark 9. Some negative dependence concepts yield small values of DQ. The joint mix dependence

usually leads to a zero DQ as we see in Theorem 1 (ii). The negative dependence concept of Lee

and Ahn (2014), weaker than joint mix dependence, does not necessarily lead to a small value of

DQ. For instance, the portfolio vector X = (X,−εX) is counter-monotonic for ε > 0, but its DQ

can be close to 1 for small ε. In particular, we have DQVaR
α (X) ≈ 0.9333 and DQES

α (X) ≈ 0.9044

for α = 0.05 and ε = 0.01 when X follows a standard normal distribution.

8 Conclusion

The DQs based on VaR and ES are investigated in this paper, following the theory of DQ

in Han et al. (2022). In particular, for elliptical and MRV models, these DQs have simple forms.

Comparisons between DQ and DR illustrate some attractive features of DQ. These results enhance

the theory and applications of DQ.

We summarize some features below. (i) In cases of VaR and ES, DQs have simple formulas,

in a way comparable to DRs. (ii) DQs based on VaR and ES take values in bounded intervals and

have natural ranges of [0, n] and [0, 1], respectively. The special values 0, 1 and n which correspond
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to special dependence structures can be constructed. (iii) DQs based on VaR and ES for elliptical

distributions and MRV models have convenient expressions and it can capture heavy tails in an

intuitive way. (iv) Portfolio optimization for elliptical models boils down to a well-studied problem

in the literature. For centered elliptical models, optimizing DQ and optimizing DR are equivalent

problems.

We discuss some future directions for the research of DQ. As a potential alternative to ES,

expectiles (Bellini et al. (2014)) have received increasing attention in the recent literature; indeed,

they are the only elicitable coherent risk measures (Ziegel (2016)). It would be interesting to

formulate DQ based on expectiles and investigate its properties that are different from DQ based

on ES or VaR. As another interesting class of risk measures, the optimized certainty equivalents

(Ben-Tal and Teboulle (2007)) are introduced from decision-theoretic criterion based on utility

functions. It would be useful to construct DQ based on utility functions or optimized certainty

equivalents and analyze the decision-theoretic implications of DQ.
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